韩漫免费漫画在线观看方法,《好好疼爱里面》免费看,年轻漂亮的女士护士内衣,妈妈醉酒后把我当爸爸电视剧

文章 > Spyder > 怎么使用spyder的帮助

怎么使用spyder的帮助

头像

爱喝马黛茶的安东尼

2020-01-16 14:02:1111017浏览 · 0收藏 · 0评论

在使用Spyder时,有可能要查询某个函数或者某个??榈木咛逵梅?。

1、要查看??榈淖饔盟得?、简介,可以直接在交互区直接输入:

print( ??槊?__doc__)

例如:要查看pandas的介绍

In [1]:print(pd.__doc__)
pandas - a powerful data analysis and manipulation library for Python
=====================================================================
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
Main Features
-------------
Here are just a few of the things that pandas does well:
  - Easy handling of missing data in floating point as well as non-floating
    point data
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can  be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets
  - Intuitive merging and joining data sets
  - Flexible reshaping and pivoting of data sets
  - Hierarchical labeling of axes (possible to have multiple labels per tick)
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, moving window linear regressions,
    date shifting and lagging, etc.

2、想知道某个函数的用法可以使用:

help(函数名)

例如:要查询pandas的fillna的使用方法

In [2] :help(x.fillna)
Help on method fillna in module pandas.core.frame:
fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) method of pandas.
core.frame.DataFrame instance
    Fill NA/NaN values using the specified method
    Parameters
    ----------
    value : scalar, dict, Series, or DataFrame
        Value to use to fill holes (e.g. 0), alternately a
        dict/Series/DataFrame of values specifying which value to use for
        each index (for a Series) or column (for a DataFrame). (values not
        in the dict/Series/DataFrame will not be filled). This value cannot
        be a list.
    method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
        Method to use for filling holes in reindexed Series
        pad / ffill: propagate last valid observation forward to next valid
        backfill / bfill: use NEXT valid observation to fill gap
    axis : {0 or 'index', 1 or 'columns'}
    inplace : boolean, default False
        If True, fill in place. Note: this will modify any
        other views on this object, (e.g. a no-copy slice for a column in a
        DataFrame).
    limit : int, default None
        If method is specified, this is the maximum number of consecutive
        NaN values to forward/backward fill. In other words, if there is
        a gap with more than this number of consecutive NaNs, it will only
        be partially filled. If method is not specified, this is the
        maximum number of entries along the entire axis where NaNs will be
        filled. Must be greater than 0 if not None.
    downcast : dict, default is None
        a dict of item->dtype of what to downcast if possible,
        or the string 'infer' which will try to downcast to an appropriate
        equal type (e.g. float64 to int64 if possible)
    See Also
    --------
    reindex, asfreq
    Returns
    -------
    filled : DataFrame

Python学习网,有大量免费的Spyder使用教程,欢迎大家学习!

关注

关注公众号,随时随地在线学习

本教程部分素材来源于网络,版权问题联系站长!

《少妇》6| 林喜宝爸爸叫李叔叔到家是哪一集 | 《如狼似虎的女人》大结局| 鲁鲁影院免费观看电视剧电影| BL 电影| 小玲与公做爱小小说| 姑妄言在线阅读| 二人世界高清视频播放 | 一枪战三母2雪姨是哪个角 | 《帐篷里的秘密》动漫| 《厨房韵母2》动漫下线了吗| 三男一女CP免费观看电视剧大全 | 男友在客厅把我添高潮了 | 二叶草GY5968| 母与子免费观看大全电视剧| 免费看网站在线观看人数在哪直播| 7X7X7X7X7任意噪入口的.. | 狂野少女高清免费观看第14集| 《我的妹妹想你大棒棒糖电视剧》| 忘穿内裤被同桌C了好爽微博小说 每天晚上都在汆肉中度 | 可切换老司机模式浏览器| 宝宝水帘洞都拉丝了怎么办| 《疯狂瑜伽》完整版| 二人努力生猴子免费观看 | HTTPS://9.1.CRM...| 三女片免费观看电视剧杨贵妃传| 《不再是朋友的夜晚第二季》| 宫泽里惠| 年轻的嫂子2| 午马影视免费观看电视剧| 老阿姨高清免费观看电视剧| 女朋友太骚了每次进去都觉得很热 | 女人最骚的年龄期是多少岁了| 香蕉视频安装包怎么安装| 打牌输了2次被吸奶算赢吗| 父女一起到达巅峰的小说| 台湾版《黄花闺女》完整版| 人犬兽人在线观看免费完整| JK制服| 发出嗯嗯接吻的声音| 下面流乳白色的水的原因